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Abstract

We discuss some recent developments concerning the nucleon’s helicity parton distribution func-
tions: New preliminary data from jet production at RHIC suggest for the first time a non-vanishing
polarization of gluons in the nucleon. SIDIS measurements at COMPASS provide better constraints
on the strange and light sea quark helicity distributions. Single-longitudinal spin asymmetries in
W -boson production have been observed at RHIC and will ultimately give new insights into the
light quark and anti-quark helicity structure of the nucleon.

1 Introduction

QCD spin physics has been driven by the hugely successful experimental program of polarized deeply-
inelastic lepton-nucleon scattering (DIS) [1]. One of the most important results has been the finding
that the quark and anti-quark spins (summed over all flavors) provide only about a quarter of the
nucleon’s spin, �⌃ ⇡ 0.25 in the proton helicity sum rule [2]:
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This result implies that sizable contributions to the nucleon spin should come from the gluon spin
contribution�G, or from orbital angular momenta L

q,g

of partons. To determine the other contributions
to the nucleon spin has become a key focus of the field. In the present article, we describe some of
the recent developments of the field. We focus on current e↵orts to determine the helicity parton
distributions of the nucleon and on the latest experimental results.

The helicity structure of the nucleon is foremost described by its twist-two helicity parton distribution
functions,

�f(x,Q2) ⌘ f

+(x,Q2) � f

�(x,Q2) (f = u, d, s, ū, d̄, s̄, g) , (2)

⇤Talk presented by W. Vogelsang
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+ (f�) denoting the number density of partons with the same (opposite) helicity as the nucleon’s, as a
function of momentum fraction x and scale Q. QCD predicts the Q2-dependence of the densities through
the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [3]:
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where ⌦ denotes a convolution, and the splitting functions �P

ij

are evaluated in QCD perturbation
theory [3, 4, 5].

The contributions �⌃(Q2) and �G(Q2) in the helicity sum rule (1) are given by
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�G(Q2) =

Z 1

0

�g(x,Q2)dx . (5)

�⌃ is independent of Q2 at the lowest order. The distributions have a proper field-theoretic definition.
For example, in case of �g it is given by [6]
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4⇡ xP
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written in A

+ = 0 gauge. Here, Gµ⌫ is the QCD field strength tensor, and G̃

µ⌫ its dual. The integral
of �g(x,Q2) over all momentum fractions x becomes a local operator only in A

+ = 0 gauge and then
coincides with �G(Q2) [2].

The helicity parton distributions may be probed in spin asymmetries for reactions at large momen-
tum transfer. The probes used so far are inclusive and semi-inclusive deep-inelastic lepton scattering
(DIS and SIDIS, respectively), and pp scattering at large transverse momentum, see Fig. 1. Polarized
DIS and SIDIS experiments have been carried out at SLAC, CERN, DESY and the Je↵erson Laboratory
[1] and mostly constrain the quark and anti-quark helicity distributions. RHIC at BNL [7, 8] is the
first polarized proton-proton collider, operating at

p
s = 200 and 500 GeV. The measurement of gluon

polarization in the proton is a major focus and strength of RHIC.
The basic theoretical concept that underlies much of spin physics is the factorization theorem. It

states that large momentum-transfer reactions may be factorized into long-distance pieces that contain

DIS$ pp$(RHIC)$SIDIS$

Figure 1: Parton-model Feynman diagrams for the processes constraining nucleon helicity structure.
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• Proton spin sum rule

�⌃ =
X

i

Z 1

0
dx�fqi(x) �G =

Z 1

0
dx�fg(x)

�⌃ ⇡ 0.25

• Contribution from quarks much smaller then expected 

• Helicity parton distributions are probed by 



Current Status
• Current data is not well described 

• We need more data and more accurate theoretical predictions
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FIG. 6: Comparisons of NLO results for AW±
L for various sets

of helicity parton distributions [10, 11, 20, 43, 45] to the STAR
data [2] taken at

p
S = 510 GeV and to the PHENIX mid-

rapidity points for electrons/positrons with |⌘|  0.35 [3]. The
cut 25 < pT < 50 GeV has been applied on the lepton’s trans-
verse momentum. Note that the PHENIX points are for pT > 30
GeV and includes the contributions from photons and Z bosons.
We have chosen the scales µR = µF = MW /2.

We have also presented new comparisons of the latest
RHIC data with the NLO predictions for some of the sets
of polarized parton distributions available in the litera-
ture. In line with observations in the earlier literature we
have found that the data prefer a rather sizable positive
�ū helicity distribution in the proton.
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Appendix

In this Appendix, we present some of our explicit NLO
results. We first consider the qq̄0 channel when an inter-
mediate W� boson is produced (for example through dū
scattering), for which e↵ectively C

1

= 0, C
2

= 8 in (16)
(see discussion after Eq. (17)). We define the functions
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(A.1)

with the usual (Heaviside) step function. In addition to
the values z

1

= 1 , z
2

= w , z
3

= (1 � v)/(1 � vw) of
Eq. (39), we introduce

z
0

= 0 , z
4

= 1 � v + vw , (A.2)

and we set

Ji ⌘ J(zi) , Ki ⌘ K(zi) . (A.3)

We then find for production of a W�:

s d2�̂
(1)

qq̄0

dvdw
=

|Uqq0 |2
⇡Nc

✓
GFM

2

Wp
2

◆
2

CF

"
v2P

1

"
2(1 + w2)

✓
log(1 � w)

1 � w

◆

+

� 2 log(1 � vw)
Pqq(w)

CF

+

✓
⇡2 � 8 +

✓
3

2
+ 2 log(1 � v)

◆
log

1 � v

v

◆
�(1 � w) +

1 + w2

1 � w
(J

0

� J
2

� J
3

+ J
4

+ (K
0

� K
2

� K
3

+K
4

))

#

� v

2

✓
J
0

� 2J
3

+ J
4

1 � vw
� J

0

� J
4

1 � v + vw

◆
+ v2

(
P
2

"
(1 + w2)

✓
log(1 � w)

1 � w

◆

+

� Pqq(w)

CF
log

✓
µ2

F

vs

◆
+ 1 � w

� 1

2

1 + w2

1 � w

⇣
J
0

� 2J
2

+ J
4

+


w
(K

0

� 2K
2

+K
4

)
⌘��

+
v3w2

1 � vw

(
v ! 1 � vw,w ! 1 � v

1 � vw

)#
, (A.4)

with the splitting function Pqq of Eq. (32), and with

 ⌘ 2MW (�2

W +M2

W )

�W s
. (A.5)

Note that despite appearance the expression is perfectly
well regularized at w = 1.

5

 10

 100

 1000

 10000

 21  22  23  24  25  26  27  28  29  30

dσ
/d

P h
/d
θ 

[p
b/

Ge
V]

Ph[GeV]

E155 Θ=2.75° LO
NLO

pure WW

(a)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 21  22  23  24  25  26  27  28  29  30

A L
L

Ph [GeV]

E155 Θ=2.75°LO
 NLO

E155-DATA;

(b)

(c) (d)

FIG. 1. Unpolarized cross sections ((a) and (c)) and longitudinal double-spin asymmetries ALL for ep ! ⇡+X, at scattering angle ✓ = 2.75�
(upper panel) and ✓ = 5.5� (lower panel), respectively. We show LO and NLO results. The data are from E155 III. The dashed line shows the
pure Weizsäcker-Williams contributions by quasi-real photons. The bands in (a) and (c) represent the scale variation 1 GeV < µ < 2P

h?.

In order to compute A

`N!hX

LL at NLO we use Eq. (8) for the
spin-dependent cross section, accompanied by the results in
Eq. (25) of Ref. [15] for the spin-averaged one. In the target
rest frame, neglecting the mass of the produced hadron, we
have

S = (P + l)2 = 2ME + M

2 ,

T = (P � P

h

)2 = M

2 � 2M|~P
h

| ,
U = (l � P

h

)2 = �2E|~P
h

|(1 � cos ✓) , (22)

where M is the proton mass. We note that we find a rather
strong decrease of our results (at the level of about 10%) if we
drop the M

2 terms in (22). This is to be understood from the
relatively modest beam energy and the forward kinematics. In
principle we should include the full set of target mass correc-
tions which, however, is beyond the scope of this article.

We note that the transverse hadron momentum is given in
the rest-frame variables by |~P

h?| = |~Ph

| sin(✓). Since the trans-
verse momentum sets the hard scale for the process we de-
mand for our calculations that |~P

h?| � 1 GeV. For the scatter-
ing angle ✓ = 2.75� this corresponds to a lower bound |~P

h

| �
20.9 GeV whereas for ✓ = 5.5� we have |~P

h

| � 10.5 GeV.

Conversely, for ✓ = 2.75� the data extend to |~P
h

| = 29 GeV,
corresponding to transverse momenta |~P

h?|  1.4 GeV. For
✓ = 5.5� the maximal hadron momentum in E155 is about
|~P

h

| = 24 GeV, yielding |~P
h?|  2.3 GeV.

Throughout our calculations we use the NLO unpolarized
parton distributions of [36], referred to as MSTW2008. For
the helicity parton distributions we use the latest NLO set
of [37] (DSSV). When dealing with deuteron targets we ne-
glect nuclear binding e↵ects and simply use D = (p + n)/2
along with the the isospin relations f

u/n = f

d/p etc. for the up
and down distributions in neutrons. Finally, for the pion frag-
mentation functions we choose the latest set of [38] (DSS14).
This reference does not provide fragmentation functions for
unidentified charged hadrons. For the latter we therefore use
the earlier DSS sets [39].

The experiment E155 has released data for the channels
ep ! ⇡±X, ep ! h

±
X, eD ! ⇡±X and eD ! h

±
X. In

the following we will briefly discuss each of these.

[Ringer, Vogelsang] [Hinderer, Schlegel, Vogelsang]

=> Extent techniques from unpolarized collision



N-Jettiness

virtual real virtual real-real

[Boughezal, Focke, Liu, Petriello; 
Gaunt Stahlhofen Tackmann, Walsh]



N-Jettiness

⌧cut ⇥(⌧ � ⌧cut)⇥(⌧cut � ⌧)

[Boughezal, Focke, Liu, Petriello; 
Gaunt Stahlhofen Tackmann, Walsh]



N-Jettiness

⌧cut ⇥(⌧ � ⌧cut)⇥(⌧cut � ⌧)

[Boughezal, Focke, Liu, Petriello; 
Gaunt Stahlhofen Tackmann, Walsh]

=> NLO N+1 jet calculation=> Use factorisation theorem
     derived from SCET

2

The subscript N denotes the number of jets desired in the final state, and is an input to the measurement. The qk
denote the four-momenta of any final-state radiation, while the pi denote the momenta of the initial-state hard partons
and any final-state jets. The Qi are dimensionful variables that characterize the hardness of the beam-jets and final-
state jets. The cross section factorizes in the limit where TN is less than any other hard scale in the problem [16–18].
Schematically, the form of the cross section in this limit becomes

dσ

dTN
= H ⊗B ⊗ S ⊗

[

N
∏

n

Jn

]

+ · · · . (2)

Here, H describes the effect of hard radiation, S describes the soft radiation, and Jn contains the radiation collinear
to a final-state jet. We note that the Jn can be straightforwardly replaced by a fragmentation function if a final-state
hadron is instead measured. B encodes the effect of radiation collinear to an initial beam direction. We have assumed
a single hadronic beam as for DIS; this formula would contain two beam functions for proton-proton collisions, or none
for e+e− collisions. Depending on the observable and process under consideration, only a subset of the other terms
may be present. The ellipsis denote power-suppressed terms which become negligible for TN ≪ Qi. There has been
recent progress in understanding these terms for color-singlet production [19–21]. The derivation of this factorization
theorem relies heavily upon the machinery of Soft-Collinear Effective Theory (SCET) [22]. As a NNLO calculational
technique, N -jettiness subtraction works by partitioning the phase space using a cut T cut

N with T cut
N ≪ Qi, using the

factorization theorem of Eq. (2) below this cut, and noting that the cross section above the cut becomes a simpler
NLO cross section. We refer the reader to the original papers for more details [7, 8]. We note that the study of
N -jettiness has intrinsic interest besides its use as a NNLO subtraction scheme. It is widely used in study of jet
substructure through its N -subjettiness incarnation [23], and has been proposed as a measure of the nuclear medium
in electron-nucleus collisions [24, 25]. A key aspect of the usefulness of N -jettiness at the LHC is our ability to
calculate to high orders in the QCD perturbative expansion the objects that appear in the factorization theorem of
Eq. (2). The beam function B [26, 27], the jet function Jn [28, 29] and the soft function SN for jets [30] and for the
massive case [31] are all known to the NNLO level, as are the hard functions for many processes of interest.
Given the success of this framework in describing a host of data at the LHC and at other unpolarized colliders,

and the need for higher-order corrections to better describe current data from polarized collisions as well as expected
future data from an EIC, it is interesting to extend the N -jettiness framework to cover polarized collisions. As a
concrete example we consider the double spin asymmetry in lepton-proton collisions, ALL. This observable begins at
the leading order in the twist expansion. It is straightforward to write down the analogous factorization theorem in
the low-TN limit for the relevant polarized cross section that enters the numerator of this asymmetry1:

dσLL

dTN
= ∆H ⊗∆B ⊗ S ⊗

[

N
∏

n

Jn

]

+ · · · . (3)

Here, the ∆ denotes the polarization dependence caused by taking the appropriate difference of helicities needed
to obtain the double-spin asymmetry. We note that the soft function S and the jet/fragmentation function Jn
are unchanged upon considering polarized collisions. Furthermore, the hard function is obtained from the virtual
corrections to the scattering process under consideration. Since these are generally computed for the separate helicity
states, ∆H is known for most processes of interest. Only the polarized beam function ∆B is not known at the NNLO
level. In analogy to the beam function for unpolarized collisions, the polarized beam function is a non-perturbative
object that can be matched to the polarized parton distribution functions [16–18]:

∆Bi =
∑

j

∆Iij ⊗∆fj

[

1 +O

(

Λ2
QCD

TN

)]

. (4)

The ∆Iij are perturbatively calculable matching coefficients, while the ∆fj are the standard polarized PDFs. The
i and j are parton labels. From this expression it is also apparent that studying the polarized beam function may
reveal aspects of the polarized PDFs.
It is our goal in this manuscript to calculate the polarized quark beam function matching coefficients through the

NNLO level. This is the last missing ingredient needed to bring the theoretical status of polarized collisions at leading
twist to the same level as for unpolarized collisions. It will allow for NNLO calculations in polarized collisions, and will

1 The possible contribution of perturbative Glauber modes to this factorization theorem is expected to occur at higher orders in the strong
coupling constant than the NNLO level of interest here [32].

Hard function (H): virtual corrections, process dependent 
Soft function (S): describes soft radiation
Jet function (J): describes radiation collinear to final state jets 
Beam function (B): describes collinear initial state radiation

Power corrections
[Stewart, Tackmann, Waalewijn]



Polarized Collisions

2

The subscript N denotes the number of jets desired in the final state, and is an input to the measurement. The qk
denote the four-momenta of any final-state radiation, while the pi denote the momenta of the initial-state hard partons
and any final-state jets. The Qi are dimensionful variables that characterize the hardness of the beam-jets and final-
state jets. The cross section factorizes in the limit where TN is less than any other hard scale in the problem [16–18].
Schematically, the form of the cross section in this limit becomes

dσ
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= H ⊗B ⊗ S ⊗

[

N
∏
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Jn
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+ · · · . (2)

Here, H describes the effect of hard radiation, S describes the soft radiation, and Jn contains the radiation collinear
to a final-state jet. We note that the Jn can be straightforwardly replaced by a fragmentation function if a final-state
hadron is instead measured. B encodes the effect of radiation collinear to an initial beam direction. We have assumed
a single hadronic beam as for DIS; this formula would contain two beam functions for proton-proton collisions, or none
for e+e− collisions. Depending on the observable and process under consideration, only a subset of the other terms
may be present. The ellipsis denote power-suppressed terms which become negligible for TN ≪ Qi. There has been
recent progress in understanding these terms for color-singlet production [19–21]. The derivation of this factorization
theorem relies heavily upon the machinery of Soft-Collinear Effective Theory (SCET) [22]. As a NNLO calculational
technique, N -jettiness subtraction works by partitioning the phase space using a cut T cut

N with T cut
N ≪ Qi, using the

factorization theorem of Eq. (2) below this cut, and noting that the cross section above the cut becomes a simpler
NLO cross section. We refer the reader to the original papers for more details [7, 8]. We note that the study of
N -jettiness has intrinsic interest besides its use as a NNLO subtraction scheme. It is widely used in study of jet
substructure through its N -subjettiness incarnation [23], and has been proposed as a measure of the nuclear medium
in electron-nucleus collisions [24, 25]. A key aspect of the usefulness of N -jettiness at the LHC is our ability to
calculate to high orders in the QCD perturbative expansion the objects that appear in the factorization theorem of
Eq. (2). The beam function B [26, 27], the jet function Jn [28, 29] and the soft function SN for jets [30] and for the
massive case [31] are all known to the NNLO level, as are the hard functions for many processes of interest.
Given the success of this framework in describing a host of data at the LHC and at other unpolarized colliders,

and the need for higher-order corrections to better describe current data from polarized collisions as well as expected
future data from an EIC, it is interesting to extend the N -jettiness framework to cover polarized collisions. As a
concrete example we consider the double spin asymmetry in lepton-proton collisions, ALL. This observable begins at
the leading order in the twist expansion. It is straightforward to write down the analogous factorization theorem in
the low-TN limit for the relevant polarized cross section that enters the numerator of this asymmetry1:

dσLL

dTN
= ∆H ⊗∆B ⊗ S ⊗

[

N
∏

n

Jn

]

+ · · · . (3)

Here, the ∆ denotes the polarization dependence caused by taking the appropriate difference of helicities needed
to obtain the double-spin asymmetry. We note that the soft function S and the jet/fragmentation function Jn
are unchanged upon considering polarized collisions. Furthermore, the hard function is obtained from the virtual
corrections to the scattering process under consideration. Since these are generally computed for the separate helicity
states, ∆H is known for most processes of interest. Only the polarized beam function ∆B is not known at the NNLO
level. In analogy to the beam function for unpolarized collisions, the polarized beam function is a non-perturbative
object that can be matched to the polarized parton distribution functions [16–18]:

∆Bi =
∑

j

∆Iij ⊗∆fj

[

1 +O

(

Λ2
QCD

TN

)]

. (4)

The ∆Iij are perturbatively calculable matching coefficients, while the ∆fj are the standard polarized PDFs. The
i and j are parton labels. From this expression it is also apparent that studying the polarized beam function may
reveal aspects of the polarized PDFs.
It is our goal in this manuscript to calculate the polarized quark beam function matching coefficients through the

NNLO level. This is the last missing ingredient needed to bring the theoretical status of polarized collisions at leading
twist to the same level as for unpolarized collisions. It will allow for NNLO calculations in polarized collisions, and will

1 The possible contribution of perturbative Glauber modes to this factorization theorem is expected to occur at higher orders in the strong
coupling constant than the NNLO level of interest here [32].

• Above cut piece can simply be polarised

• Similar factorization theorem for the below cut piece

Soft function: unchanged from unpolarized version 

Jet function: unchanged from unpolarized version

Hard function: known for DIS and DY

Beam function: previously unknown, discussed here

�H = H+ �H�

�B = B+ �B�

[Boughezal, Liu, Petriello]

[Becher, Neubert; Becher, Bell]



Beam function

15

�Iij describes	initial	state	radiation,	can	be	computed	perturbatively

d

d lnµ2
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t is	the	virtuality of	the	parton that	enters	the	hard	interaction

§ Beam	function	matches	to	PDFs	

§ Single	log	resummation:	DGLAP	for	polarized	PDFs

§ Matching	coefficient

t >> ⇤2
QCD�B
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(t, x, µ) =
X
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Z 1
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�I
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✓
t,

x
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◆
�f
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• Parton j with momentum distribution determined by PDF emits 
collinear radiation, which builds up jet described by Iij

• These emissions might change the parton i entering the hard 
scattering (type, momentum fraction)

•      can be calculated perturbativelyIij

[Stewart, Tackmann, Waalewijn]



Outline of Calculation
• Generate squared amplitude

�Bbare
ij (t, z) =

9

∆I(2)qi q̄j (z) =∆I(2)q̄iqj (z) = δij∆I(2,V )
qq̄ (z) +∆I(2,S)

qq (z), (52)

∆I(2)qg (z) =∆I(2)q̄g (z) = ∆I(2)qg (z). (53)

As we will see in our explicit calculations, ∆I(2,S)
qq (z) is determined by the q′ → q channel, ∆I(2,V )

qq̄ (z) is determined in

the q̄ → q channel, ∆I(2,V )
qq (z) is determined in the q → q channel, and ∆I(2)qg (z) is determined in the g → q channel.

For completeness, we reproduce the necessary scheme transformations of these quantities from the Appendix:

∆I(2,V )
qq =∆Ĩ(2,V )

qq −∆Ĩ(1)qq ⊗ z(1)qq + z(1)qq ⊗ z(1)qq − z(2,V )
qq ,

∆I(2,V )
qq̄ =∆Ĩ(2,V )

qq̄ − z(2,V )
qq̄ ,

∆I(2,S)
qq =∆Ĩ(2,S)

qq − z(2,S)
qq . (54)

We organize our calculation in terms of cut diagrams, which distinguish whether the two additional partons that
appear in the NNLO calculation are virtual or real. The double-virtual corrections, in which both additional partons
are virtual, are scaleless and vanish in dimensional regularization. This leaves us with real-real and real-virtual
diagrams to calculate. Fig. 2 shows the symmetric diagrams contributing to the real-real corrections at NNLO as
a representative example of the types of contributions which occur. Interference diagrams are not explicitly shown.
Fig. 3 shows the real-virtual corrections at NNLO. Mirror diagrams are not explicitly shown.

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Symmetric real-real diagrams at NNLO. Interference diagrams are not shown. Dashed lines indicate which intermediate
particles are on-shell.

A. The q′ → q and q̄ → q channels

We will begin by showing the details of our treatment of the q′ → q transition, since this calculation is sufficiently
compact to demonstrate explicitly. In light-cone gauge there is only one diagram that contributes: Fig. 2(e), in which

10

(a) (b) (c)

(d) (e) (f)

FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.

+ . . .
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�Bbare
ij (t, z) =

9

∆I(2)qi q̄j (z) =∆I(2)q̄iqj (z) = δij∆I(2,V )
qq̄ (z) +∆I(2,S)

qq (z), (52)

∆I(2)qg (z) =∆I(2)q̄g (z) = ∆I(2)qg (z). (53)

As we will see in our explicit calculations, ∆I(2,S)
qq (z) is determined by the q′ → q channel, ∆I(2,V )

qq̄ (z) is determined in

the q̄ → q channel, ∆I(2,V )
qq (z) is determined in the q → q channel, and ∆I(2)qg (z) is determined in the g → q channel.

For completeness, we reproduce the necessary scheme transformations of these quantities from the Appendix:

∆I(2,V )
qq =∆Ĩ(2,V )

qq −∆Ĩ(1)qq ⊗ z(1)qq + z(1)qq ⊗ z(1)qq − z(2,V )
qq ,

∆I(2,V )
qq̄ =∆Ĩ(2,V )

qq̄ − z(2,V )
qq̄ ,

∆I(2,S)
qq =∆Ĩ(2,S)

qq − z(2,S)
qq . (54)

We organize our calculation in terms of cut diagrams, which distinguish whether the two additional partons that
appear in the NNLO calculation are virtual or real. The double-virtual corrections, in which both additional partons
are virtual, are scaleless and vanish in dimensional regularization. This leaves us with real-real and real-virtual
diagrams to calculate. Fig. 2 shows the symmetric diagrams contributing to the real-real corrections at NNLO as
a representative example of the types of contributions which occur. Interference diagrams are not explicitly shown.
Fig. 3 shows the real-virtual corrections at NNLO. Mirror diagrams are not explicitly shown.

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Symmetric real-real diagrams at NNLO. Interference diagrams are not shown. Dashed lines indicate which intermediate
particles are on-shell.

A. The q′ → q and q̄ → q channels

We will begin by showing the details of our treatment of the q′ → q transition, since this calculation is sufficiently
compact to demonstrate explicitly. In light-cone gauge there is only one diagram that contributes: Fig. 2(e), in which
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(d) (e) (f)

FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.

+ . . .

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

[Chetyrkin,Tkachov] �Bbare
ij (t, z) =

nX

i=1

ci(t, z)Ii(t, z)

• Integration-by-parts(IBP)
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�Bbare
ij (t, z) =

9

∆I(2)qi q̄j (z) =∆I(2)q̄iqj (z) = δij∆I(2,V )
qq̄ (z) +∆I(2,S)

qq (z), (52)

∆I(2)qg (z) =∆I(2)q̄g (z) = ∆I(2)qg (z). (53)

As we will see in our explicit calculations, ∆I(2,S)
qq (z) is determined by the q′ → q channel, ∆I(2,V )

qq̄ (z) is determined in

the q̄ → q channel, ∆I(2,V )
qq (z) is determined in the q → q channel, and ∆I(2)qg (z) is determined in the g → q channel.

For completeness, we reproduce the necessary scheme transformations of these quantities from the Appendix:

∆I(2,V )
qq =∆Ĩ(2,V )

qq −∆Ĩ(1)qq ⊗ z(1)qq + z(1)qq ⊗ z(1)qq − z(2,V )
qq ,

∆I(2,V )
qq̄ =∆Ĩ(2,V )

qq̄ − z(2,V )
qq̄ ,

∆I(2,S)
qq =∆Ĩ(2,S)

qq − z(2,S)
qq . (54)

We organize our calculation in terms of cut diagrams, which distinguish whether the two additional partons that
appear in the NNLO calculation are virtual or real. The double-virtual corrections, in which both additional partons
are virtual, are scaleless and vanish in dimensional regularization. This leaves us with real-real and real-virtual
diagrams to calculate. Fig. 2 shows the symmetric diagrams contributing to the real-real corrections at NNLO as
a representative example of the types of contributions which occur. Interference diagrams are not explicitly shown.
Fig. 3 shows the real-virtual corrections at NNLO. Mirror diagrams are not explicitly shown.

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Symmetric real-real diagrams at NNLO. Interference diagrams are not shown. Dashed lines indicate which intermediate
particles are on-shell.

A. The q′ → q and q̄ → q channels

We will begin by showing the details of our treatment of the q′ → q transition, since this calculation is sufficiently
compact to demonstrate explicitly. In light-cone gauge there is only one diagram that contributes: Fig. 2(e), in which
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FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.

+ . . .

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

[Chetyrkin,Tkachov] �Bbare
ij (t, z) =

nX

i=1

ci(t, z)Ii(t, z)

[Kotikov;Gehrmann,Remiddi]

• Integration-by-parts(IBP)
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�Bbare
ij (t, z) =

9

∆I(2)qi q̄j (z) =∆I(2)q̄iqj (z) = δij∆I(2,V )
qq̄ (z) +∆I(2,S)

qq (z), (52)

∆I(2)qg (z) =∆I(2)q̄g (z) = ∆I(2)qg (z). (53)

As we will see in our explicit calculations, ∆I(2,S)
qq (z) is determined by the q′ → q channel, ∆I(2,V )

qq̄ (z) is determined in

the q̄ → q channel, ∆I(2,V )
qq (z) is determined in the q → q channel, and ∆I(2)qg (z) is determined in the g → q channel.

For completeness, we reproduce the necessary scheme transformations of these quantities from the Appendix:

∆I(2,V )
qq =∆Ĩ(2,V )

qq −∆Ĩ(1)qq ⊗ z(1)qq + z(1)qq ⊗ z(1)qq − z(2,V )
qq ,

∆I(2,V )
qq̄ =∆Ĩ(2,V )

qq̄ − z(2,V )
qq̄ ,

∆I(2,S)
qq =∆Ĩ(2,S)

qq − z(2,S)
qq . (54)

We organize our calculation in terms of cut diagrams, which distinguish whether the two additional partons that
appear in the NNLO calculation are virtual or real. The double-virtual corrections, in which both additional partons
are virtual, are scaleless and vanish in dimensional regularization. This leaves us with real-real and real-virtual
diagrams to calculate. Fig. 2 shows the symmetric diagrams contributing to the real-real corrections at NNLO as
a representative example of the types of contributions which occur. Interference diagrams are not explicitly shown.
Fig. 3 shows the real-virtual corrections at NNLO. Mirror diagrams are not explicitly shown.

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Symmetric real-real diagrams at NNLO. Interference diagrams are not shown. Dashed lines indicate which intermediate
particles are on-shell.

A. The q′ → q and q̄ → q channels

We will begin by showing the details of our treatment of the q′ → q transition, since this calculation is sufficiently
compact to demonstrate explicitly. In light-cone gauge there is only one diagram that contributes: Fig. 2(e), in which
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(d) (e) (f)

FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.

+ . . .

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

[Chetyrkin,Tkachov]

4

The tree-level matching coefficient is therefore

I(0)
qq (t, z, µ) = I(0)

q̄q̄ (t, z, µ) = δ(t)δ(1 − z). (11)

Inserting instead a gluon in place of the the initial-state proton leads to a vanishing result, allowing us to conclude
that

I(0)
qg (t, z, µ) = I(0)

gq (t, z, µ) = 0. (12)

III. RENORMALIZATION AND MATCHING

At higher orders in the strong coupling constant we must renormalize the beam function, and also perform the
matching to the PDFs. The matching equation has already been presented in Eq. (9). The bare and renormalized
beam functions are related through the renormalization constants Zi:

∆Bbare
ij (t, z) =

∫

dt′Zi(t− t′, µ)∆Bij(t
′, z, µ) , (13)

where the bare beam function depends on the renormalized MS coupling g, and the renormalization constants Zi

are defined to remove UV divergences in the bare beam function. Taking derivatives on both sides of Eq. (13) with
respect to µ, one can derive the renormalization group equations (RGEs) for the polarized beam functions:

µ
d

dµ
∆Bij(t

′, z, µ) =

∫

dt′γi
B(t− t′, µ)∆Bij(t

′, z, µ), (14)

where the anomalous dimension for the quark beam function in the MS scheme is defined as

γi
B(t, µ) = −

∫

dt′(Zi)
−1(t− t′, µ)µ

d

dµ
Zi(t

′, µ). (15)

The inverse of Zi is defined as
∫

dt′(Zi)
−1(t− t′, µ)Zi(t

′, µ) = δ(t). (16)

As we will see later from explicit calculations at NLO and NNLO, the renormalization constant is the same in the
polarized and unpolarized cases. This indicates that the RGEs for polarized beam functions follow exactly the same
form as in the unpolarized case.
To facilitate the expansion in the strong coupling constant we introduce separate expansions for each of the quantities

that appear in our result:

∆Bij =
∑

n

(αs

4π

)n

∆B(n)
ij ,

Zi =
∑

n

(αs

4π

)n

Z(n)
i ,

∆Iij =
∑

n

(αs

4π

)n

∆I(n)
ij ,

∆fij =
∑

n

(αs

2π

)n

∆f (n)
ij . (17)

The different choices of two and four in these expansions match the typical conventions in the literature for the various
objects. At order αs, using the fact that

∆B(0)
ij (t′, z, µ) = δijδ(t

′)δ(1 − z), Z(0)
i (t− t′, µ) = δ(t− t′), (18)

we can derive the following relation between the renormalized and bare beam functions at NLO:

∆Bbare(1)
ij (t, z) = ∆B(1)

ij (t, z, µ) + Z(1)
i (t, µ)δijδ(1 − z). (19)

�Bbare
ij (t, z) =

nX

i=1

ci(t, z)Ii(t, z)

[Kotikov;Gehrmann,Remiddi]

• Integration-by-parts(IBP)

• Differential Equations(DEQ)
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�Bbare
ij (t, z) =

9

∆I(2)qi q̄j (z) =∆I(2)q̄iqj (z) = δij∆I(2,V )
qq̄ (z) +∆I(2,S)

qq (z), (52)

∆I(2)qg (z) =∆I(2)q̄g (z) = ∆I(2)qg (z). (53)

As we will see in our explicit calculations, ∆I(2,S)
qq (z) is determined by the q′ → q channel, ∆I(2,V )

qq̄ (z) is determined in

the q̄ → q channel, ∆I(2,V )
qq (z) is determined in the q → q channel, and ∆I(2)qg (z) is determined in the g → q channel.

For completeness, we reproduce the necessary scheme transformations of these quantities from the Appendix:

∆I(2,V )
qq =∆Ĩ(2,V )

qq −∆Ĩ(1)qq ⊗ z(1)qq + z(1)qq ⊗ z(1)qq − z(2,V )
qq ,

∆I(2,V )
qq̄ =∆Ĩ(2,V )

qq̄ − z(2,V )
qq̄ ,

∆I(2,S)
qq =∆Ĩ(2,S)

qq − z(2,S)
qq . (54)

We organize our calculation in terms of cut diagrams, which distinguish whether the two additional partons that
appear in the NNLO calculation are virtual or real. The double-virtual corrections, in which both additional partons
are virtual, are scaleless and vanish in dimensional regularization. This leaves us with real-real and real-virtual
diagrams to calculate. Fig. 2 shows the symmetric diagrams contributing to the real-real corrections at NNLO as
a representative example of the types of contributions which occur. Interference diagrams are not explicitly shown.
Fig. 3 shows the real-virtual corrections at NNLO. Mirror diagrams are not explicitly shown.

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Symmetric real-real diagrams at NNLO. Interference diagrams are not shown. Dashed lines indicate which intermediate
particles are on-shell.

A. The q′ → q and q̄ → q channels

We will begin by showing the details of our treatment of the q′ → q transition, since this calculation is sufficiently
compact to demonstrate explicitly. In light-cone gauge there is only one diagram that contributes: Fig. 2(e), in which
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(d) (e) (f)

FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.
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be a necessary ingredient in extending the global fit of polarized proton structure [33] to the NNLO level. The beam
function can be thought of as a generalized PDF, where the operators appearing in the definition are separated along
both light-cone directions. In this sense our calculation of ∆B represents the first NNLO calculation of such an object
for polarized collisions. We discuss all relevant details of our calculation, including our treatment of γ5 in dimensional
regularization. As a by-product of our calculation we provide the first independent check of the NNLO unpolarized
quark beam function. We find complete agreement with the previous result for this quantity [26]. However, we do not
find any need for an additional regulator beyond dimensional regularization in our calculation, in apparent contrast
to this previous result.
Our paper is organized as follows. We define the spin-dependent beam function and establish our notation in

Section II. In Section III we discuss the renormalization and matching needed to convert the bare results into the
renormalized matching coefficients needed in Eq. (4). We present the details of our NLO calculation in Section IV.
The details of our NNLO derivation are presented in Section V. Finally, we conclude in Section VI.

II. SETUP AND DEFINITION OF THE SPIN-DEPENDENT BEAM FUNCTION

We begin by establishing our notation and defining the spin-dependent beam function. We will use the standard
light-cone vectors nµ, n̄µ with n2 = n̄2 = 0 and n · n̄ = 2. Any four vector can be written in terms of these directions
as pµ = (p+, p−, pµ⊥) = (n · p, n̄ · p, pµ⊥).
The longitudinal spin-dependent beam function represents the difference of beam functions with positive and neg-

ative helicity in a parent proton with positive helicity. Focusing on the quark and anti-quark beam functions, we can
define them as the proton matrix element of quark operators:

∆Bq(t, x, µ) = ⟨pn(P
−),+|θ(ω)χ̄n(0)δ(t− ωp̂+)

/̄nγ5
2

[δ(ω − Pn)χn(0)]|pn(P
−),+⟩ (5)

∆Bq̄(t, x, µ) = ⟨pn(P
−),+|θ(ω)

/̄nγ5
2

χn(0)δ(t− ωp̂+)[δ(ω − Pn)χ̄n(0)]|pn(P
−),+⟩. (6)

Here, the “+” represents the positive helicity of the proton, x = ω/P− is the momentum fraction of the proton carried
by the parton that enters the hard scattering, the δ(ω − Pn) operator constrains the total minus momentum of the
composite quark/gluon field to ω, and δ(t− ωp̂+) sets the total plus momentum of all initial state radiations to t/ω.
χ is the composite quark operator

χn(y) = W †
n(y)ξn(y), (7)

where ξn is the n-collinear quark field, and Wn is the Wilson line

Wn(y) =

[

∑

perms

exp

(

−
g

Pn

n̄ · An(y)

)

]

. (8)

We refer the reader to the SCET literature for more details on the operators that appear in these definitions [22]. Our
definition of the polarized beam function follows the definition of the polarized PDF [34] with the appearance of the
additional plus momentum component t/ω. We note that t represents the beam-sector contribution to the measured
N -jettiness TN .
As discussed in the introduction the polarized beam function is a non-perturbative quantity that can be matched to

polarized PDFs, in analogy to the unpolarized beam function [16–18]. In order to calculate the matching coefficients,
we replace the proton state by n-collinear quark and gluon states with momentum p = (0, p−, 0). The desired matching
coefficients are unchanged upon making this replacement. With this substitution the matching equation takes the
form

∆Bij(t, z, µ) =
∑

k

∆Iik(t, z, µ)⊗∆fkj (z) ≡
∑

k

∫ 1

z

dz′

z′
∆Iik(t, z

′, µ)∆fkj
( z

z′

)

. (9)

The quantity ∆fkj is the distribution function for a parton of flavor k within another parton of flavor j (we have
replaced the proton state by j). The ∆Bij are the polarized beam functions with this replacement for the PDFs. The
tree level diagram for quark beam function with an external quark is

∆B(0)
qq (t, z, µ) = ⟨qn(p),+|θ(ω)χ̄n(0)δ(t− ωp̂+)

/̄nγ5
2

[δ(ω − Pn)χn(0)]|qn(p),+⟩ = δ(t)δ(1 − ω/p−). (10)
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The tree-level matching coefficient is therefore

I(0)
qq (t, z, µ) = I(0)

q̄q̄ (t, z, µ) = δ(t)δ(1 − z). (11)

Inserting instead a gluon in place of the the initial-state proton leads to a vanishing result, allowing us to conclude
that

I(0)
qg (t, z, µ) = I(0)

gq (t, z, µ) = 0. (12)

III. RENORMALIZATION AND MATCHING

At higher orders in the strong coupling constant we must renormalize the beam function, and also perform the
matching to the PDFs. The matching equation has already been presented in Eq. (9). The bare and renormalized
beam functions are related through the renormalization constants Zi:

∆Bbare
ij (t, z) =

∫

dt′Zi(t− t′, µ)∆Bij(t
′, z, µ) , (13)

where the bare beam function depends on the renormalized MS coupling g, and the renormalization constants Zi

are defined to remove UV divergences in the bare beam function. Taking derivatives on both sides of Eq. (13) with
respect to µ, one can derive the renormalization group equations (RGEs) for the polarized beam functions:

µ
d

dµ
∆Bij(t

′, z, µ) =

∫

dt′γi
B(t− t′, µ)∆Bij(t

′, z, µ), (14)

where the anomalous dimension for the quark beam function in the MS scheme is defined as

γi
B(t, µ) = −

∫

dt′(Zi)
−1(t− t′, µ)µ

d

dµ
Zi(t

′, µ). (15)

The inverse of Zi is defined as
∫

dt′(Zi)
−1(t− t′, µ)Zi(t

′, µ) = δ(t). (16)

As we will see later from explicit calculations at NLO and NNLO, the renormalization constant is the same in the
polarized and unpolarized cases. This indicates that the RGEs for polarized beam functions follow exactly the same
form as in the unpolarized case.
To facilitate the expansion in the strong coupling constant we introduce separate expansions for each of the quantities

that appear in our result:

∆Bij =
∑

n

(αs

4π

)n

∆B(n)
ij ,

Zi =
∑

n

(αs

4π

)n

Z(n)
i ,

∆Iij =
∑

n

(αs

4π

)n

∆I(n)
ij ,

∆fij =
∑

n

(αs

2π

)n

∆f (n)
ij . (17)

The different choices of two and four in these expansions match the typical conventions in the literature for the various
objects. At order αs, using the fact that

∆B(0)
ij (t′, z, µ) = δijδ(t

′)δ(1 − z), Z(0)
i (t− t′, µ) = δ(t− t′), (18)

we can derive the following relation between the renormalized and bare beam functions at NLO:

∆Bbare(1)
ij (t, z) = ∆B(1)

ij (t, z, µ) + Z(1)
i (t, µ)δijδ(1 − z). (19)

�Bbare
ij (t, z) =

nX

i=1

ci(t, z)Ii(t, z)

[Kotikov;Gehrmann,Remiddi]

• Integration-by-parts(IBP)

• Differential Equations(DEQ)
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�Bbare
ij (t, z) =

9

∆I(2)qi q̄j (z) =∆I(2)q̄iqj (z) = δij∆I(2,V )
qq̄ (z) +∆I(2,S)

qq (z), (52)

∆I(2)qg (z) =∆I(2)q̄g (z) = ∆I(2)qg (z). (53)

As we will see in our explicit calculations, ∆I(2,S)
qq (z) is determined by the q′ → q channel, ∆I(2,V )

qq̄ (z) is determined in

the q̄ → q channel, ∆I(2,V )
qq (z) is determined in the q → q channel, and ∆I(2)qg (z) is determined in the g → q channel.

For completeness, we reproduce the necessary scheme transformations of these quantities from the Appendix:

∆I(2,V )
qq =∆Ĩ(2,V )

qq −∆Ĩ(1)qq ⊗ z(1)qq + z(1)qq ⊗ z(1)qq − z(2,V )
qq ,

∆I(2,V )
qq̄ =∆Ĩ(2,V )

qq̄ − z(2,V )
qq̄ ,

∆I(2,S)
qq =∆Ĩ(2,S)

qq − z(2,S)
qq . (54)

We organize our calculation in terms of cut diagrams, which distinguish whether the two additional partons that
appear in the NNLO calculation are virtual or real. The double-virtual corrections, in which both additional partons
are virtual, are scaleless and vanish in dimensional regularization. This leaves us with real-real and real-virtual
diagrams to calculate. Fig. 2 shows the symmetric diagrams contributing to the real-real corrections at NNLO as
a representative example of the types of contributions which occur. Interference diagrams are not explicitly shown.
Fig. 3 shows the real-virtual corrections at NNLO. Mirror diagrams are not explicitly shown.

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Symmetric real-real diagrams at NNLO. Interference diagrams are not shown. Dashed lines indicate which intermediate
particles are on-shell.

A. The q′ → q and q̄ → q channels

We will begin by showing the details of our treatment of the q′ → q transition, since this calculation is sufficiently
compact to demonstrate explicitly. In light-cone gauge there is only one diagram that contributes: Fig. 2(e), in which
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.
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be a necessary ingredient in extending the global fit of polarized proton structure [33] to the NNLO level. The beam
function can be thought of as a generalized PDF, where the operators appearing in the definition are separated along
both light-cone directions. In this sense our calculation of ∆B represents the first NNLO calculation of such an object
for polarized collisions. We discuss all relevant details of our calculation, including our treatment of γ5 in dimensional
regularization. As a by-product of our calculation we provide the first independent check of the NNLO unpolarized
quark beam function. We find complete agreement with the previous result for this quantity [26]. However, we do not
find any need for an additional regulator beyond dimensional regularization in our calculation, in apparent contrast
to this previous result.
Our paper is organized as follows. We define the spin-dependent beam function and establish our notation in

Section II. In Section III we discuss the renormalization and matching needed to convert the bare results into the
renormalized matching coefficients needed in Eq. (4). We present the details of our NLO calculation in Section IV.
The details of our NNLO derivation are presented in Section V. Finally, we conclude in Section VI.

II. SETUP AND DEFINITION OF THE SPIN-DEPENDENT BEAM FUNCTION

We begin by establishing our notation and defining the spin-dependent beam function. We will use the standard
light-cone vectors nµ, n̄µ with n2 = n̄2 = 0 and n · n̄ = 2. Any four vector can be written in terms of these directions
as pµ = (p+, p−, pµ⊥) = (n · p, n̄ · p, pµ⊥).
The longitudinal spin-dependent beam function represents the difference of beam functions with positive and neg-

ative helicity in a parent proton with positive helicity. Focusing on the quark and anti-quark beam functions, we can
define them as the proton matrix element of quark operators:

∆Bq(t, x, µ) = ⟨pn(P
−),+|θ(ω)χ̄n(0)δ(t− ωp̂+)

/̄nγ5
2

[δ(ω − Pn)χn(0)]|pn(P
−),+⟩ (5)

∆Bq̄(t, x, µ) = ⟨pn(P
−),+|θ(ω)

/̄nγ5
2

χn(0)δ(t− ωp̂+)[δ(ω − Pn)χ̄n(0)]|pn(P
−),+⟩. (6)

Here, the “+” represents the positive helicity of the proton, x = ω/P− is the momentum fraction of the proton carried
by the parton that enters the hard scattering, the δ(ω − Pn) operator constrains the total minus momentum of the
composite quark/gluon field to ω, and δ(t− ωp̂+) sets the total plus momentum of all initial state radiations to t/ω.
χ is the composite quark operator

χn(y) = W †
n(y)ξn(y), (7)

where ξn is the n-collinear quark field, and Wn is the Wilson line

Wn(y) =

[

∑

perms

exp

(

−
g

Pn

n̄ · An(y)

)

]

. (8)

We refer the reader to the SCET literature for more details on the operators that appear in these definitions [22]. Our
definition of the polarized beam function follows the definition of the polarized PDF [34] with the appearance of the
additional plus momentum component t/ω. We note that t represents the beam-sector contribution to the measured
N -jettiness TN .
As discussed in the introduction the polarized beam function is a non-perturbative quantity that can be matched to

polarized PDFs, in analogy to the unpolarized beam function [16–18]. In order to calculate the matching coefficients,
we replace the proton state by n-collinear quark and gluon states with momentum p = (0, p−, 0). The desired matching
coefficients are unchanged upon making this replacement. With this substitution the matching equation takes the
form

∆Bij(t, z, µ) =
∑

k

∆Iik(t, z, µ)⊗∆fkj (z) ≡
∑

k

∫ 1

z

dz′

z′
∆Iik(t, z

′, µ)∆fkj
( z

z′

)

. (9)

The quantity ∆fkj is the distribution function for a parton of flavor k within another parton of flavor j (we have
replaced the proton state by j). The ∆Bij are the polarized beam functions with this replacement for the PDFs. The
tree level diagram for quark beam function with an external quark is

∆B(0)
qq (t, z, µ) = ⟨qn(p),+|θ(ω)χ̄n(0)δ(t− ωp̂+)

/̄nγ5
2

[δ(ω − Pn)χn(0)]|qn(p),+⟩ = δ(t)δ(1 − ω/p−). (10)
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The tree-level matching coefficient is therefore

I(0)
qq (t, z, µ) = I(0)

q̄q̄ (t, z, µ) = δ(t)δ(1 − z). (11)

Inserting instead a gluon in place of the the initial-state proton leads to a vanishing result, allowing us to conclude
that

I(0)
qg (t, z, µ) = I(0)

gq (t, z, µ) = 0. (12)

III. RENORMALIZATION AND MATCHING

At higher orders in the strong coupling constant we must renormalize the beam function, and also perform the
matching to the PDFs. The matching equation has already been presented in Eq. (9). The bare and renormalized
beam functions are related through the renormalization constants Zi:

∆Bbare
ij (t, z) =

∫

dt′Zi(t− t′, µ)∆Bij(t
′, z, µ) , (13)

where the bare beam function depends on the renormalized MS coupling g, and the renormalization constants Zi

are defined to remove UV divergences in the bare beam function. Taking derivatives on both sides of Eq. (13) with
respect to µ, one can derive the renormalization group equations (RGEs) for the polarized beam functions:

µ
d

dµ
∆Bij(t

′, z, µ) =

∫

dt′γi
B(t− t′, µ)∆Bij(t

′, z, µ), (14)

where the anomalous dimension for the quark beam function in the MS scheme is defined as

γi
B(t, µ) = −

∫

dt′(Zi)
−1(t− t′, µ)µ

d

dµ
Zi(t

′, µ). (15)

The inverse of Zi is defined as
∫

dt′(Zi)
−1(t− t′, µ)Zi(t

′, µ) = δ(t). (16)

As we will see later from explicit calculations at NLO and NNLO, the renormalization constant is the same in the
polarized and unpolarized cases. This indicates that the RGEs for polarized beam functions follow exactly the same
form as in the unpolarized case.
To facilitate the expansion in the strong coupling constant we introduce separate expansions for each of the quantities

that appear in our result:

∆Bij =
∑

n

(αs

4π

)n

∆B(n)
ij ,

Zi =
∑

n

(αs

4π

)n

Z(n)
i ,

∆Iij =
∑

n

(αs

4π

)n

∆I(n)
ij ,

∆fij =
∑

n

(αs

2π

)n

∆f (n)
ij . (17)

The different choices of two and four in these expansions match the typical conventions in the literature for the various
objects. At order αs, using the fact that

∆B(0)
ij (t′, z, µ) = δijδ(t

′)δ(1 − z), Z(0)
i (t− t′, µ) = δ(t− t′), (18)

we can derive the following relation between the renormalized and bare beam functions at NLO:

∆Bbare(1)
ij (t, z) = ∆B(1)

ij (t, z, µ) + Z(1)
i (t, µ)δijδ(1 − z). (19)

�Bbare
ij (t, z) =

nX

i=1

ci(t, z)Ii(t, z)

[Kotikov;Gehrmann,Remiddi]
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Z z
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dt
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Similarly, we can expand Eq. (13) to obtain the analogous relation for the NNLO beam functions:

∆Bbare(2)
ij (t, z) = ∆B(2)

ij (t, z, µ) + Z(2)
i (t, µ)δijδ(1− z) +

∫

dt′Z(1)
i (t− t′, µ)∆B(1)

ij (t′, z, µ). (20)

We will use standard MS renormalization, so that the Z(n)
i renormalization constants will contain only poles in the

dimensional regularization parameter ϵ = (4− d)/2, where d is the space-time dimension.
An important technical issue to discuss is the treatment of γ5 in d-dimensions. Several consistent schemes have

been proposed for this purpose. We use the HV scheme [35, 36], in which γ5 maintains its 4-dimensional definition:
γ5 = iγ0γ1γ2γ3. Denoting 4-dimensional quantities with a tilde and ϵ-dimensional ones with a hat, this definition
leads to the following commutation and anti-commutation rules for γ5:

{γ5, γ̃µ} = 0, [γ5, γ̂µ] = 0. (21)

These rules are easy to track in standard algebraic manipulation programs. We use Tracer [37] to implement these
rules, together with in-house routines written in Form [38] as a cross-check.
The use of the HV scheme necessitates an additional transformation in order to obtain the standard MS factorization

scheme for the PDFs, as is well known in the literature [39–44]. Switching to a matrix notation in parton flavors, the
beam function computing using Eq. (21) can be written as

∆B = ∆Ĩ ⊗∆f̃ , (22)

where the tilde represents the results before scheme transformation. We decompose the matching coefficients into
singlet and non-singlet pieces in analogy to the usual decomposition performed for the splitting functions:

∆Iqiqj (z) =∆Iq̄i q̄j (z) = δij∆I(V )
qq (z) +∆I(S)

qq (z), (23)

∆Iqi q̄j (z) =∆Iq̄iqj (z) = δij∆I(V )
qq̄ (z) +∆I(S)

qq (z). (24)

The scheme transformation can be derived by demanding helicity conservation for massless quarks, which relates
the polarized and unpolarized splitting functions. These requirements naturally extend to the matching coefficients,
leading to the relations

∆I(V )
qq = I(V )

qq , ∆I(V )
qq̄ = −I(V )

qq̄ . (25)

The naively-computed ∆Ĩ do not satisfy these constraints. We can restore these relations by the transformations

∆B =
(

∆Ĩ ⊗ Z̄5
)

⊗
(

Z5 ⊗∆f̃
)

= ∆I ⊗∆f (26)

where

∆I = ∆Ĩ ⊗ Z̄5, ∆f = Z5 ⊗∆f̃ (27)

with Z5 the scheme transformation matrix, and Z̄5 is its inverse which satisfies Z̄5 ⊗ Z5 = 1. More details on the
transformation matrix are given later in this manuscript.
Having established the factorization scheme transformation and the expansion of the renormalization condition

through the necessary NNLO order, we now consider the matching condition. To obtain the matching coefficients we
replace the proton states in Eq. (5) by perturbative quark or gluon states. With this replacement the polarized PDFs
can be calculated as an expansion in αs, taking on the familiar forms

∆f̃ (1)
ij (z) =−

1

ϵ
∆P̃ (0)

ij (z),

∆f̃ (2)
ij (z) =

1

2ϵ2

∑

k

∆P̃ (0)
ik (z)⊗∆P̃ (0)

kj (z) +
β0

4ϵ2
∆P̃ (0)

ij (z)−
1

2ϵ
∆P̃ (1)

ij (z), (28)

where β0 is the usual leading-order QCD beta function,

β0 =
11CA − 4TRNF

3
. (29)

• Use standard        renormalization

Then the term in B
i/j

we are going to compute is B(2)
i/j

, and eq. (2.15) gives

B
bare,(2)
i/j

(t, z) = Z
i(2)
B

(t, µ) �
ij

�(1�z) +B
(2)
i/j

(t, z, µ) +

Z

dt0Zi(1)
B

(t�t0, µ)B(1)
i/j

(t0, z, µ) .

(2.18)

Having obtained B
(2)
q/j

from eq. (2.18), we can extract the two loop I(2)
qj

by expanding

eq. (2.14) to second order in ↵
s

. Let us define the expansions of f
i/j

and I
ij

as

f
i/j

=
1
X

n=0

⇣↵
s

2⇡

⌘

n

f
(n)
i/j

, I
ij

=
1
X

n=0

⇣↵
s

4⇡

⌘

n I(n)
ij

. (2.19)

Then, the part of eq. (2.14) proportional to ↵2
s

yields the matching relation

I(2)
ij

(z, t, µ) = B
(2)
i/j

(z, t, µ)� 4f (2)
i/j

(z, µ)�(t)� 2
X

k

I(1)
ik

(z, t, µ)⌦
z

f
(1)
k/j

(z, µ) . (2.20)

All individual terms on the right-hand side are IR divergent, and as mentioned earlier,

have to be consistently evaluated in d dimensions. In particular, in the last term we need

the one-loop contribution to I
ij

in d = 4� 2✏ dimensions, which can be straightforwardly

obtained from Appendix C of ref. [1]. The IR divergences cancel between the terms such

that we obtain an IR-finite result for I(2)
ij

(z, t, µ), and we can take the limit ✏ ! 0.

The renormalized PDF matrix elements f
i/j

(z, µ) are related to the bare ones by [see

eq. (2.8)]

fbare
i/j

(z) =
X

k

Z

Zf

ik

(z, µ)⌦
z

f
k/j

(z, µ) . (2.21)

In pure dimensional regularization, all loop corrections to the bare partonic PDF matrix

elements are scaleless and vanish. Hence, the MS renormalized f
(n)
i/j

(for n � 1) are given by

a pure counterterm contribution. In particular f (1)
i/j

and f
(2)
i/j

, which are needed in eq. (2.20),

are expressed in terms of the well-known one- and two-loop splitting functions P
(0)
ij

and

P
(1)
ij

as

f
(1)
i/j

(z) = �1

✏
P

(0)
ij

(z) , (2.22)

f
(2)
i/j

(z) =
1

2✏2

X

k

P
(0)
ik

(z)⌦
z

P
(0)
kj

(z) +
�0
4✏2

P
(0)
ij

(z)� 1

2✏
P

(1)
ij

(z) . (2.23)

Note that since f
(2)
i/j

only contains 1/✏n-poles and I(2)
ij

contains none, knowing B
(2)
q/j

and the one-loop quantities in eq. (2.20) allows us to extract both I(2)
qj

and f
(2)
q/j

, the latter

of which allows us to calculate the two-loop splitting functions P (1)
qj

via eq. (2.23). Hence,

from our calculation we get an independent determination of P (1)
qj

“for free”, which should

of course agree with the known results [52–54], serving as a very useful cross check of our

calculation. Formally, the fact that the beam function calculation reproduces the complete

– 9 –

• Requires calculation of                        up to �B(1)
ij (t, z, µ) O(✏2)

6

The polarized splitting functions ∆P̃ij needed in our calculation are defined in the Appendix. Expanding the matching
equation in terms of αs, we can derive the NLO matching coefficient in terms of the renormalized beam function and
PDFs:

∆Ĩ(1)
ij (t, z, µ) = ∆B(1)

ij (t, z, µ)− 2δ(t)∆f̃ (1)
ij (z) . (30)

Similarly, we can derive the matching coefficient at order α2
s

∆Ĩ(2)
ij (t, z, µ) = ∆B(2)

ij (t, z, µ)− 4δ(t)∆f̃ (2)
ij (z)− 2

∑

k

∆Ĩ(1)
ik (t, z, µ)⊗∆f̃ (1)

kj (z) . (31)

The convolutions required for the calculation were computed with the mathematica package MT [45]. Notice that the
PDFs of Eq. (28) and the matching coefficients of Eqs. (30, 31) in our matching calculations still require the scheme
transformation of Eq. (27). Performing this transformation, we obtain the physical results which restore the helicity
conservation equations as shown in Eq. (25).
As discussed in Ref. [18] and reviewed above, the beam function satisfies a renormalization group equation that

allows the logarithmic dependence of the matching coefficients on the renormalization scale µ to be derived. Solving
this equation allows us to predict all logarithmically-enhanced terms in t in terms of known anomalous dimensions:

∆I(1)
ij (t, z, µ) =

1

µ2
L1

(

t

µ2

)

Γi
0δijδ(1− z) +

1

µ2
L0

(

t

µ2

)[

−
γi
B0

2
δijδ(1− z) + 2∆P (0)

ij (z)

]

+ δ(t)∆I(1)ij (z), (32)

∆I(2)
ij (t, z, µ) =

1

µ2
L3

(

t

µ2

)

(Γi
0)

2

2
δijδ(1 − z) +

1

µ2
L2

(

t

µ2

)

Γi
0

[

−

(

3

4
γi
B0 +

β0

2

)

δijδ(1 − z) + 3∆P (0)
ij (z)

]

+
1

µ2
L1

(

t

µ2

)

{

[

Γi
1 − (Γi

0)
2π

2

6
+

(γi
B0)

2

4
+

β0

2
γi
B0

]

δijδ(1− z) + Γi
0∆I(1)ij (z)

− 2(γi
B0 + β0)∆P (0)

ij (z) + 4
∑

k

∆P (0)
ik (z)⊗∆P (0)

kj (z)

}

+
1

µ2
L0

(

t

µ2

)

{

[

(Γi
0)

2ζ3 + Γi
0γ

i
B0

π2

12
−

γi
B1

2

]

δijδ(1− z)− Γi
0
π2

3
∆P (0)

ij (z)−

(

γi
B0

2
+ β0

)

∆I(1)ij (z)

+ 2
∑

k

∆I(1)ik (z)⊗∆P (0)
kj (z) + 4∆P (1)

ij (z)

}

+ δ(t)∆I(2)ij (z). (33)

The non-cusp anomalous dimension for the quark beam function in MS is the same as that in unpolarized case, and
reads

γq
B0 =6CF , (34)

γq
B1 =CF

[

CA

(

146

9
− 80ζ3

)

+ CF (3− 4π2 + 48ζ3) + β0

(

121

9
+

2π2

3

)]

. (35)

The cusp anomalous dimension is

Γq
0 = 4CF , Γq

1 = CF
4

3

[

(4 − π2)CA + 5β0

]

. (36)

Ln is the standard plus distribution, defined as

Ln(x) =

[

θ(x) lnn(x)

x

]

+

. (37)

The only terms to determine are the coefficients of the scale-independent δ(t) contributions, which we label as∆I(1)ij (z)

and ∆I(2)ij (z). In our calculation we derive all the scale-dependent terms as well in order to check that our results
satisfy Eqs. (32) and (33).
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Similarly, we can expand Eq. (13) to obtain the analogous relation for the NNLO beam functions:

∆Bbare(2)
ij (t, z) = ∆B(2)

ij (t, z, µ) + Z(2)
i (t, µ)δijδ(1− z) +

∫

dt′Z(1)
i (t− t′, µ)∆B(1)

ij (t′, z, µ). (20)

We will use standard MS renormalization, so that the Z(n)
i renormalization constants will contain only poles in the

dimensional regularization parameter ϵ = (4− d)/2, where d is the space-time dimension.
An important technical issue to discuss is the treatment of γ5 in d-dimensions. Several consistent schemes have

been proposed for this purpose. We use the HV scheme [35, 36], in which γ5 maintains its 4-dimensional definition:
γ5 = iγ0γ1γ2γ3. Denoting 4-dimensional quantities with a tilde and ϵ-dimensional ones with a hat, this definition
leads to the following commutation and anti-commutation rules for γ5:

{γ5, γ̃µ} = 0, [γ5, γ̂µ] = 0. (21)

These rules are easy to track in standard algebraic manipulation programs. We use Tracer [37] to implement these
rules, together with in-house routines written in Form [38] as a cross-check.
The use of the HV scheme necessitates an additional transformation in order to obtain the standard MS factorization

scheme for the PDFs, as is well known in the literature [39–44]. Switching to a matrix notation in parton flavors, the
beam function computing using Eq. (21) can be written as

∆B = ∆Ĩ ⊗∆f̃ , (22)

where the tilde represents the results before scheme transformation. We decompose the matching coefficients into
singlet and non-singlet pieces in analogy to the usual decomposition performed for the splitting functions:

∆Iqiqj (z) =∆Iq̄i q̄j (z) = δij∆I(V )
qq (z) +∆I(S)

qq (z), (23)

∆Iqi q̄j (z) =∆Iq̄iqj (z) = δij∆I(V )
qq̄ (z) +∆I(S)

qq (z). (24)

The scheme transformation can be derived by demanding helicity conservation for massless quarks, which relates
the polarized and unpolarized splitting functions. These requirements naturally extend to the matching coefficients,
leading to the relations

∆I(V )
qq = I(V )

qq , ∆I(V )
qq̄ = −I(V )

qq̄ . (25)

The naively-computed ∆Ĩ do not satisfy these constraints. We can restore these relations by the transformations

∆B =
(

∆Ĩ ⊗ Z̄5
)

⊗
(

Z5 ⊗∆f̃
)

= ∆I ⊗∆f (26)

where

∆I = ∆Ĩ ⊗ Z̄5, ∆f = Z5 ⊗∆f̃ (27)

with Z5 the scheme transformation matrix, and Z̄5 is its inverse which satisfies Z̄5 ⊗ Z5 = 1. More details on the
transformation matrix are given later in this manuscript.
Having established the factorization scheme transformation and the expansion of the renormalization condition

through the necessary NNLO order, we now consider the matching condition. To obtain the matching coefficients we
replace the proton states in Eq. (5) by perturbative quark or gluon states. With this replacement the polarized PDFs
can be calculated as an expansion in αs, taking on the familiar forms

∆f̃ (1)
ij (z) =−

1

ϵ
∆P̃ (0)

ij (z),

∆f̃ (2)
ij (z) =

1

2ϵ2

∑

k

∆P̃ (0)
ik (z)⊗∆P̃ (0)

kj (z) +
β0

4ϵ2
∆P̃ (0)

ij (z)−
1

2ϵ
∆P̃ (1)

ij (z), (28)

where β0 is the usual leading-order QCD beta function,

β0 =
11CA − 4TRNF

3
. (29)

• Match beam function on PDFs

• Cancellation of poles provides consistency check
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through the necessary NNLO order, we now consider the matching condition. To obtain the matching coefficients we
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∆P̃ (0)
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• Result of Dirac traces depends on d- and 4-d-dimensional momenta
• Map 4-d momenta to auxiliary vectors
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Representative real-virtual diagrams at NNLO. Mirror diagrams are not explicitly displayed. Dashed lines indicate
which intermediate particles are on-shell.

the quark entering the hard-scattering cross section is a different flavor than the one coming from the PDF. This
diagram can be calculated by using the standard QCD Feynman rules:

(αs

4π

)2
∆Bbare(2)

qq′ (t, z) =
g4

Nc

(

µ2eγE

4π

)2ϵ ∫

dPS(2)Tr[PR/pγ
ν /k1γ

σ]Tr[
/̄nγ5
2

/ℓγρ /k2γ
µ/ℓ]

1

(p− k1)2
1

(p− k1)2
1

ℓ2
1

ℓ2

× dµν(p− k1)dρσ(p− k1)Tr[T
aTb]Tr[TaTb]. (55)

Here, k1 and k2 are the momenta of the intermediate particles that pass the cut. The final-state phase space for the
NNLO real-real correction can be parameterized as

∫

dPS(2) =

∫

ddk1
(2π)d−1

ddk2
(2π)d−1

ddℓ δ(k21)δ(k
2
2)δ(ω − ℓ−)δ

[

t− ω(k+1 + k+2 )
]

δd(p− k1 − k2 − ℓ). (56)

It is straightforward to evaluate the trace appearing in Eq. (55) in the HV scheme. We are left with integrals containing
the momenta k1 and k2 over the phase space of Eq. (56).
We facilitate our calculation using integration-by-parts identities (IBP) [48, 49], implemented in the computer

code LiteRed [50]. The only non-standard aspect of our implementation of the IBP identities is our treatment of
ϵ-dimensional momenta. The HV scheme relations of Eq. (21) require us to separate the momenta k1 and k2 into
4-dimensional and ϵ-dimensional pieces, kµ = k̃µ+ k̂µ. Upon doing so we obtain integrals that depend explicitly upon

the ϵ-d momenta k̂µ. We introduce auxiliary vectors that parameterize the ϵ-dimensional direction to handle such

contributions. As an example, suppose our evaluation of the trace in Eq. (55) contains the dot product k̂1 · k̂2, and we
wish to evaluate the corresponding integral Id[k̂1 · k̂2] that occurs upon integrating this expression over phase space.
We note that Id can depend upon any other manifestly d-dimensional dot products in addition to its dependence on
k̂1 · k̂2. A simple form-factor decomposition of this integral reveals that we can write

Id[k̂1 · k̂2] = −
2ϵ

v2⊥
Id[(k1 · v⊥)(k2 · v⊥))], (57)

where v⊥ is a space-like vector with support only along the ϵ-dimensional direction. The integral on the right-hand
side is now written in a manifestly d-dimensional form, and can be handled using the standard IBP machinery.
Similar relations can be derived for all structures appearing in our integrand. To obtain all the integrals needed in our
calculation we must introduce two such auxiliary momenta, both with support only in the ϵ-dimensional momenta
but with an angular separation in this subspace.

• But: HVBM breaks helicity conservation 
=> Must be restored with additional      renormalization  

�B =
⇣
�Ĩ ⌦ Z̄5

⌘
⌦

⇣
Z5 ⌦ f̃

⌘
Z5

•     can be obtained by demanding helicity conservationZ5

�I(2,V )
qq = I(2,V )

qq �I(2,V )
qq̄ = �I(2,V )

qq̄
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Next-to-leading	order

�5 ⌘ i

4!
✏µ⌫⇢��µ�⌫���⇢

⇣↵s

4⇡

⌘
�Bbare(1)

qq (t, z) =
g2

Nc

✓
µ2e�E

4⇡

◆✏ Z
dPS(1)Tr

h n̄ · ��5
2

` · ��⇢PRp · ���` · �
i
d⇢�(k)

1

`2
1

`2
Tr[TaTa]

§ in	d-dimension	– HVBM	scheme�5

{�5, �̃µ} = 0, [�5, �̂µ] = 0

Maintain	the	four-dimension	definition anticommute in	4-dimension
commute	in	d-4	dimension	

Z
dPS(1) =

Z
ddk

(2⇡)d�1
dd` �(k2)�(! � `�)�(t� !k+)�d(p� k � `)

=
1

(4⇡)2�✏

1

�(�✏)

1

!

Z t 1�z
z

0
dk̂2?(k̂

2
?)

�1�✏

§ Final	state	phase	

d-4	dimension	momentum



Consistency checks 

• Cancellation of poles during renormalization and matching

Z5

• Confirmed unpolarised quark beam function calculation at NLO 
and NNLO

• Confirmed polarised LO and NLO splitting functions

• HVBM scheme implemented in public code Tracer and in-house 
Form routine

• MIs calculated by DEQ and direct integration

[Jamin,Lautenbacher]

• Confirmed UV renormalisation constant
[Vogelsang]

[Stewart, Tackmann, Waalewijn; Ritzmann, Waalewijn]

[Stewart, Tackmann, Waalewijn; Gaunt, Stahlhofen, Tackmann]

•      consistent with Literature
[Ravindran, Smith, van Neerven]



Conclusions & Outlook
• Calculated spin-dependent quark beam function

• Last missing ingredient to apply N-jettiness subtraction to 
many polarized processes

• Provided independent check on:
- unpolarized quark beam function up to NNLO

- polarised splitting function up to NLO

• Ready for phenomenological studies
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